Package: bayescount 1.0.0-9
bayescount: Statistical Analyses and Power Calculations for Count Data and Faecal Egg Count Reduction Tests (FECRT)
Power calculations and hypothesis testing for the difference in mean of two negative binomial distributions A set of functions to allow analysis of count data (such as faecal egg count data) using Bayesian MCMC methods. Returns information on the possible values for mean count, coefficient of variation and zero inflation (true prevalence) present in the data. A complete faecal egg count reduction test (FECRT) model is implemented, which returns inference on the true efficacy of the drug from the pre- and post-treatment data provided, using non-parametric bootstrapping as well as using Bayesian MCMC. Functions to perform power analyses for faecal egg counts (including FECRT) are also provided. A working installation of JAGS (<http://mcmc-jags.sourceforge.net>) is required for MCMC-based methods
Authors:
bayescount_1.0.0-9.tar.gz
bayescount_1.0.0-9.zip(r-4.5)bayescount_1.0.0-9.zip(r-4.4)bayescount_1.0.0-9.zip(r-4.3)
bayescount_1.0.0-9.tgz(r-4.4-x86_64)bayescount_1.0.0-9.tgz(r-4.4-arm64)bayescount_1.0.0-9.tgz(r-4.3-x86_64)bayescount_1.0.0-9.tgz(r-4.3-arm64)
bayescount_1.0.0-9.tar.gz(r-4.5-noble)bayescount_1.0.0-9.tar.gz(r-4.4-noble)
bayescount.pdf |bayescount.html✨
bayescount/json (API)
# Install 'bayescount' in R: |
install.packages('bayescount', repos = c('https://mdenwood.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mdenwood/bayescount/issues
Last updated 5 years agofrom:a9906dcb6d. Checks:OK: 1 WARNING: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-win-x86_64 | WARNING | Nov 06 2024 |
R-4.5-linux-x86_64 | WARNING | Nov 06 2024 |
R-4.4-win-x86_64 | WARNING | Nov 06 2024 |
R-4.4-mac-x86_64 | WARNING | Nov 06 2024 |
R-4.4-mac-aarch64 | WARNING | Nov 06 2024 |
R-4.3-win-x86_64 | WARNING | Nov 06 2024 |
R-4.3-mac-x86_64 | WARNING | Nov 06 2024 |
R-4.3-mac-aarch64 | WARNING | Nov 06 2024 |
Exports:analyse_fecrassess.varianceasymptotic_cibayescount.singlebinary.searchbnb_pscheckintlimitchecklen2posdoublechecksinglelogicalchecksingleposdoublechecksingleposintchecksingleprobconjbeta_cicount_analysescount_analysiscount_modelcount_powercount_precisioncount.analysiscount.modelcount.powercount.precisiondobson_ciestimate_kestimate_k_experimentestimate_k_mlestimate_k_uselessestimate_ksestimate_ks_oldestimate_ks_old_oldfec.analysisFEC.analysisfec.modelFEC.modelfec.powerFEC.powerfec.power.limitsFEC.power.limitsfec.precisionFEC.precisionfecrtFECRTfecrt_analysesfecrt_bnbfecrt_powerfecrt_power_comparison_wrapfecrt_power_pairedfecrt_power_pooledfecrt_power_unpairedfecrt_power_wrapfecrt_sim_pairedfecrt_sim_unpairedfecrt.analysisFECRT.analysisfecrt.modelFECRT.modelfecrt.powerFECRT.powerfecrt.power.limitsFECRT.power.limitsfecrt.precisionFECRT.precisionfind_thetafindthetaget_type_ciget_type_pvlnormal_paramslnormal.paramsmethodcompnormal_paramsnormal.paramsolderprint.fecrt.resultspbeta_nbinompbnbpbnb1pbnb2pghyperpowersim_pairedpowersim_unpairedprint.fecrt_resultsreduction_analysisreduction_modelreduction_powerreduction_precisionreduction_pvalreduction_pvalsreduction.analysisreduction.modelreduction.powerreduction.precisionrun.modelshiny_launchsummarise_fecrwaavp_ci